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DESIGN SPECIFICATIONS 

 

The goal of this project was to design a 

programmable signal generator capable 

of generating a CW signal in the 5.8 GHz 

ISM band with FCC Part 15-compliant 

frequency hopping. The design needed to 

meet the following specifications: 

 

• Operation from 5.725-5.850 GHz 

with no measurable signal out of 

band; 

• 7 dBm (5 mW) of output power; 

• Must hop between at least 75 

frequency channels spaced at least 

1 MHz apart; 

• Maximum of 0.4s spent on any one 

carrier frequency during any 30s 

interval; 

• Design must be contained on a 

single board, but may be driven by 

an external power supply and 

microcontroller. 

 

The designed PCB must meet the 

following specifications, set by the 

capabilities of the Georgia Tech in-house 

milling machine: 

 

• Two layers maximum; 

• Standard FR4 material, with 

relative permittivity of 4.34 and 

loss tangent of 0.02; 

• Board thickness of either 31 mils 

or 59 mils; 

• >12 mils isolation between traces; 

• >10 mils via diameter; 

• Maximum PCB size of 8” x 11”; 

• Minimum PCB size of 0.5” x 0.5”. 

 

DESIGN OVERVIEW 

 

Figure 1 shows a high-level diagram of 

the signal generator design.  

 

 
FIGURE 1. Signal generator overview. 

 

The carrier wave will be generated by a 

voltage-controlled oscillator (VCO), which 

is controlled via a feedback loop with a 

phase-locked loop (PLL) chip. The 

frequency set-point of the PLL is 

programmable via SPI connection with a 

PIC microcontroller, which will provide 

the frequency-hopping functionality. A 

crystal oscillator provides a 10 MHz 

reference signal for the PLL. Finally, the 

VCO output will be filtered through a 

band-pass filter to remove any out-of-

band components, and an RF amplifier 



will boost the signal to the desired 7dBm 

output power.  

 

PLL DESIGN 

 

The PLL was implemented using the 

reference circuit provided in the PLL 

datasheet, shown in Figure 2. 

 

 
FIGURE 2. PLL reference circuit [1]. 

 

In PLL design, the critical component to 

design is the loop filter. There are two key 

parameters of the PLL that would have an 

impact on loop filter design: loop 

bandwidth and phase margin. 

 

The loop bandwidth influences the lock 

time. In the project requirements, the 

maximum lock time is 0.4s. Based on this 

requirement, loop bandwidth is set to 

50KHz.  The simulation below indicates 

that the lock time is only 40us, which 

meets our requirement  

 
FIGURE 3. PLL lock time response. 

In terms of phase margin, we set it to 60 

degrees. Normally more than 45 degrees 

is enough is for PLL stability.  

 

With the above design, we simulate the 

closed loop gain performance. As you can 

see, there is a little peaking in amplitude. 

But it’s good enough to guarantee PLL 

stability.  

 

 
FIGURE 4. PLL closed-loop gain. 

 

 

WILKINSON DIVIDER DESIGN 

 

The PLL requires feedback from the VCO 

to match frequency, so the VCO output 

must be split. A Wilkinson divider was 

used for this purpose, as it provides a 

number of advantages over other splitting 

designs: it is (ideally) lossless in the 

forward direction, it is inherently 

matched at all ports (assuming an equal 

power split), and there is good isolation 

between the two output ports. Figure 5 

shows the typical layout for a 3 dB 

Wilkinson divider. 
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FIGURE 5. 3 dB Wilkinson divider 

schematic. 

 

The divider was designed and tuned in 

ADS to obtain an S(2,1) and S(3,1) as 

close to 3 dB as possible at 5.8 GHz and 

matched to 50Ω. An equal power split 

was used for ease of design, and because 

we could determine no particular reason 

to use an uneven split. Figure 6 shows the 

final layout of the divider, and Table 2 

gives the dimensions of the transmission 

lines involved. 

 

 
FIGURE 6. Wilkinson divider layout. 

 

Table 2. Wilkinson Divider Dimensions 

Parameter Value 

Input/Output line 

widths 

59 mils 

Leg widths 31 mils 

Leg lengths 241 mils 

 

Figure 7 shows the S(2,1) and S(3,1) 

response of this circuit as simulated in 

Momentum. The divider provides about    

-3.4 dB at both output ports over the 

entire 5.725-5.850 GHz frequency range. 

 

 
FIGURE 7. Wilkinson divider S(2,1) and 

S(3,1). 

 

One output leg of the divider feeds the 

BPF and RF amplifier leading to the 

circuit output, while the other leg feeds 

back to the PLL reference input. 

 

BAND-PASS FILTER DESIGN 

 

The desired filter specifications are 

defined as follows: 

 

• Center frequency (fc) = 5.7875 

GHz; 

• Bandwidth = 125 MHz; 

• Maximally flat pass-band. 

 

A coupled line design with a maximally-

flat response is implemented so as to 

ensure ease of fabrication and a flat 

response over the desired frequency 

range.  A low order (N=2) filter is used as 

higher order designs proved to be very 

lossy. The parameters for the design are 

listed in Table 3. 

 

Table 3. Band-Pass Filter Parameters 

n gn Zeven Zodd 

1 1.4142 53.51 46.49 

2 1.4142 50.29 49.71 

3 1 54.11 45.89 

 

The circuit schematic and layout are 

shown in Figures 8 and 9 as designed and 

optimized in Agilent ADS. 



 

 
FIGURE 8. Band-pass filter schematic. 

 
FIGURE 9. Band-pass filter layout. 

The S-parameter results of the 

Momentum simulation of the filter are 

shown in Figure 10. The response shows 

a flat passband in the frequency range of 

interest, with an attenuation of about -4 

dB. This loss will be offset by the 

following amplifier. 

 

 
FIGURE 10. Band-pass filter 

performance in Momentum. 

 

 

LINK BUDGET AND AMPLIFIER DESIGN 

 

With the BPF designed, the Wilkinson 

divider and BPF were cascaded in ADS to 

simulate the total insertion loss from the 

divider input to the BPF output, in order 

to determine whether one amplifier 

would be sufficient to achieve the 

specified output power, or whether two 

would be necessary. Figure 11 shows the 

cascaded circuit layout, and Figure 12 

shows the insertion loss through the 

circuit. 

 

 
FIGURE 11. Divider + BPF layout. 

 

 
FIGURE 12. Divider + BPF simulated 

insertion loss. 

 

Figure 12 shows approximately 8 dB of 

loss through the entire circuit. The VCO 

has a specified typical power output of 1.5 

dBm, and the RF amplifier has a specified 

gain of about 17 dB. Table 4 details the 

link budget for this circuit, assuming a 

conservative 2 dB of extra loss from the 

VCO to the output to account for slight 

mismatches, dielectric loss due to FR-4’s 

poor loss tangent, and conductor loss. 



 

Table 4. Link Budget 

Component Gain 

VCO output +1.5 dBm 

Divider+BPF -8 dB 

Extra losses -2 dB 

Amplifier +17 dB 

Output power +8.5 dBm 

 

Based on this calculation, one amplifier 

should be sufficient to provide the 7 dBm 

output power specified. 

 

The amplifier was laid out and biased 

following the reference circuit provided 

in the amplifier datasheet [2] and shown 

in Figure 13. 

 

 
FIGURE 13. RF amplifier biasing circuit 

[2]. 

 

The bias resistor was chosen to be 162Ω 

based on the amplifier datasheet and our 

9V supply voltage, and the blocking 

capacitors were chosen to be 10 nF to 

provide a low impedance (< 2Ω) at 5.8 

GHz. 

 

MICROCONTROLLER PROGRAMMING 

 

A Microchip PIC184F2321 28-pin 

microcontroller was selected for the 

design to control the PLL and implement 

frequency hopping. This device was 

selected due to its available and ease of 

programming. The PIC was out on the 

same board and communicates with the 

PLL via an SPI interface and configures 

the frequency of operation by loading a 

series of 24 bit latches.  With the correct 

latch configuration, the PLL will select the 

voltage for the VCO and lock to the chosen 

frequency. 

 

The PIC was programmed with a list of 75 

different frequencies in a random order.  

Every 0.25 seconds, the PIC would 

configure the PLL to hop to the next 

frequency in the list.  After reaching the 

end of the list, it begins again at the start.  

This fulfills the frequency hopping 

requirement of the project. 

 

PCB LAYOUT 

 

The PCB layout for the signal generator 

was designed to be as simple as possible.  

The only required connectors are a 9V 

power connector and an SMA output for 

the signal.  Optional programming and SPI 

headers are also available. 

 

The layout was designed for a two layer 

board with minimal via holes. Most 

routing was done on the top layer with 

surface mount components, except for a 

few power traces on the bottom layer.  

The rest of the bottom layer was a single 

ground plane for both digital and RF. 

 

The board was fabricated on 31 mil FR4 

with 0.5 oz copper on each side.  A milling 

machine etched out the circuitry and 

drilled holes, and a chemical process was 

used to plate via holes for improved 

grounding.  The schematic and layout are 

both included in Appendix 1 and 2. 

 

IMPLEMENTATION AND PERFORMANCE 

 

The final signal generator was a complete 

success and fully compliant.  It hops to all 

75 channels randomly and outputs about 



8.6 dBm, though the output power does 

vary depending on frequency. 

 

Figure 14 shows an image from a 

spectrum analyzer connected to the 

output of the signal generator when the 

generator was locked to a single 

frequency.  There is only a single 

continuous wave signal with no spurious 

emissions. 

 

 

 
FIGURE 14. Signal generator output on 

spectrum analyzer. 

 

Figure 15 shows the same signal on the 

spectrum analyzer with a 5 MHz span and 

10 kHz resolution bandwidth.  It can be 

seen that the first harmonic is 1 MHz from 

the center carrier and is 40 dB below the 

carrier in power, which is more than 

acceptable for a communication system. 

 

Figure 16 shows a picture of the final 

system connected to a spectrum analyzer. 

 

 
FIGURE 15. Signal generator output on 

spectrum analyzer with 5 MHz span. 

 

 

 



 
FIGURE 16. Final signal generator design connect to spectrum analyzer. 
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Appendix 1: Signal Generator Schematic 

 



Appendix 2: Signal Generator Layout 

 
  



Appendix 3: PIC Source Code 
 
#include <p18f2321.h> 
#include <timers.h> 
#include "config_bits.h" 
#include "init.h" 
 
#define STATUS_LED PORTCbits.RC2 
#define CS PORTCbits.RC6 
 
#define PIN PORTAbits.RA0 
#define PIN_PULSE PIN = 1; PIN = 0; 
 
#pragma code high_vector=0x08 
void interrupt_at_high_vector(void) 
{ 
    _asm GOTO HiPriISR _endasm 
} 
#pragma code 
#pragma interrupt HiPriISR 
 
 
unsigned long buffer;       // buffer for sending data over SPI 
unsigned int timer_count;   // used for measuring time 
 
 
#define NUM_CHANNELS 75 
unsigned char channel_sequence[] = {47, 103, 118, 86, 62, 43, 28, 136, 68, 56, 131, 149, 139, 20, 
142, 107, 51, 93, 130, 7, 116, 58, 133, 48, 121, 21, 141, 63, 82, 64, 5, 140, 65, 33, 24, 78, 
106, 135, 98, 52, 71, 125, 15, 73, 69, 99, 13, 44, 22, 35, 87, 143, 128, 122, 66, 1, 41, 61, 31, 
10, 120, 102, 59, 119, 137, 76, 67, 127, 38, 34, 147, 70, 91, 81, 11}; 
int current_channel=0; 
int cFreq=5725; 
 
 
 
void main() { 
     
    Initial(); 
 
    STATUS_LED = 1; 
 
    // Timer 1: trigger every 0.4 ms 
    // Register R/W in one 16-bit operation, 1:8 Prescale 
    T1CON = 0b10110000; 
 
    PIE1bits.TMR1IE = 1;        // Timer1 overflow interrupt enabled 
    IPR1bits.TMR1IP = 1;        // Timer1 gets high priority interrupts 
    RCONbits.IPEN = 1;          // Enable high/low priority interrupt feature 
    INTCONbits.GIEH = 1;         // Enable both high priority interrupts 
    PIR1bits.TMR1IF = 0;         // Clear interrupt flag 
 
    T1CONbits.TMR1ON = 1;       // enable Timer 1; 
    timer_count=0; 
 
    CS = 1; // set chip select high to start 
 
    // INITIALIZE SPI as MASTER 
    SSPBUF = 0; 
    SSPSTAT = 0b01000000;   
    SSPCON1 = 0b00100000; 
     
    while (1) 
    { 
        while (timer_count <1) { } // wait for timer (every .5 seconds) 
        timer_count = 0; 
 
        PIN_PULSE; 
         
        // send the next frequency in the sequence to the PLL 
 
        sendPLL(channel_sequence[current_channel]+5725); 
        STATUS_LED = !STATUS_LED; 
        current_channel++; 
        if (current_channel >= NUM_CHANNELS) 
            current_channel = 0; 
         
    } 
} 



void SPI_send() 
{ 
    // send 24 bits (3 bytes) to PLL 
 
    unsigned char toSend; 
 
    CS = 0;            // Chip select low to start SPI (LE on PLL) 
 
        toSend = (buffer >> 16) & 0xFF; 
        PIR1bits.SSPIF = 0;         // Clear SPI flag 
        SSPBUF = toSend;            // Send byte 
        while (!PIR1bits.SSPIF);   // Wait for transmission to complete 
 
        toSend = (buffer >> 8) & 0xFF; 
        PIR1bits.SSPIF = 0;         // Clear SPI flag 
        SSPBUF = toSend;            // Send byte 
        while (!PIR1bits.SSPIF);   // Wait for transmission to complete 
 
        toSend = buffer  & 0xFF; 
        PIR1bits.SSPIF = 0;         // Clear SPI flag 
        SSPBUF = toSend;            // Send byte 
        while (!PIR1bits.SSPIF);   // Wait for transmission to complete 
 
 
    CS = 1;            // Chip select goes high (LE on PLL) 
} 
 
void sendPLL(int freq) 
{ 
    // change the PLL frequency 
    // range is 5725 to 5875 (in MHz) 
     
    unsigned int B=89;  // A counter value for 5725 MHz 
    unsigned char A=29; // B counter value for 5725 MHz (6 bits) 
    int k;  // used for calculations 
 
    if (freq < 5725) freq = 5725; 
    if (freq > 5875) freq = 5875; 
 
    // maths to calculate A and B values 
    // R is 20.  using a base frequency of 5725 MHz 
    k = freq - 5725 + A;   // number of "B counts" we need.  64 "B counts" = 1 "A count" 
    B += k >> 6;            // divide by 64 to get number of "B counts" 
    A = k & 0x3F;           // the remainder (lower 6 bits) is the number of "A Counts" 
     
    buffer = (unsigned long)0xDF8096;   // function latch 
    SPI_send(); 
 
    buffer = (unsigned long)0x000050;   // R counter 
    SPI_send(); 
 
    buffer = (unsigned long)((B << 8) + (A << 2) + 1);  // N counter latch 
    SPI_send(); 
 
    buffer = (unsigned long)0xDF8092;       // function latch 
    SPI_send(); 
} 
 
 
 void HiPriISR() 
{ 
   // triggers on timer overflow (should be every .25 seconds) 
      
   //WriteTimer1(65055);       // Preload timer value to shorten period 
   PIR1bits.TMR1IF = 0;         // Clear interrupt flag 
   timer_count++; 
} 

 


