
Design and Implementation of a Frequency-Hopping 5.8

GHz Signal Generator

Gary Menezes

Daniel Smith

Adam Troyer

Chen Zhou

ECE 6361 – Summer 2012

DESIGN SPECIFICATIONS

The goal of this project was to design a

programmable signal generator capable

of generating a CW signal in the 5.8 GHz

ISM band with FCC Part 15-compliant

frequency hopping. The design needed to

meet the following specifications:

• Operation from 5.725-5.850 GHz

with no measurable signal out of

band;

• 7 dBm (5 mW) of output power;

• Must hop between at least 75

frequency channels spaced at least

1 MHz apart;

• Maximum of 0.4s spent on any one

carrier frequency during any 30s

interval;

• Design must be contained on a

single board, but may be driven by

an external power supply and

microcontroller.

The designed PCB must meet the

following specifications, set by the

capabilities of the Georgia Tech in-house

milling machine:

• Two layers maximum;

• Standard FR4 material, with

relative permittivity of 4.34 and

loss tangent of 0.02;

• Board thickness of either 31 mils

or 59 mils;

• >12 mils isolation between traces;

• >10 mils via diameter;

• Maximum PCB size of 8” x 11”;

• Minimum PCB size of 0.5” x 0.5”.

DESIGN OVERVIEW

Figure 1 shows a high-level diagram of

the signal generator design.

FIGURE 1. Signal generator overview.

The carrier wave will be generated by a

voltage-controlled oscillator (VCO), which

is controlled via a feedback loop with a

phase-locked loop (PLL) chip. The

frequency set-point of the PLL is

programmable via SPI connection with a

PIC microcontroller, which will provide

the frequency-hopping functionality. A

crystal oscillator provides a 10 MHz

reference signal for the PLL. Finally, the

VCO output will be filtered through a

band-pass filter to remove any out-of-

band components, and an RF amplifier

will boost the signal to the desired 7dBm

output power.

PLL DESIGN

The PLL was implemented using the

reference circuit provided in the PLL

datasheet, shown in Figure 2.

FIGURE 2. PLL reference circuit [1].

In PLL design, the critical component to

design is the loop filter. There are two key

parameters of the PLL that would have an

impact on loop filter design: loop

bandwidth and phase margin.

The loop bandwidth influences the lock

time. In the project requirements, the

maximum lock time is 0.4s. Based on this

requirement, loop bandwidth is set to

50KHz. The simulation below indicates

that the lock time is only 40us, which

meets our requirement

FIGURE 3. PLL lock time response.

In terms of phase margin, we set it to 60

degrees. Normally more than 45 degrees

is enough is for PLL stability.

With the above design, we simulate the

closed loop gain performance. As you can

see, there is a little peaking in amplitude.

But it’s good enough to guarantee PLL

stability.

FIGURE 4. PLL closed-loop gain.

WILKINSON DIVIDER DESIGN

The PLL requires feedback from the VCO

to match frequency, so the VCO output

must be split. A Wilkinson divider was

used for this purpose, as it provides a

number of advantages over other splitting

designs: it is (ideally) lossless in the

forward direction, it is inherently

matched at all ports (assuming an equal

power split), and there is good isolation

between the two output ports. Figure 5

shows the typical layout for a 3 dB

Wilkinson divider.

0 10 20 30 40 50 60 70 80 90 100 110

Time (us)

5.72

5.74

5.76

5.78

5.80

5.82

5.84

5.86

5.88

5.90

F
re

q
u

e
n

c
y

 (
G

H
z
)

Frequency

FIGURE 5. 3 dB Wilkinson divider

schematic.

The divider was designed and tuned in

ADS to obtain an S(2,1) and S(3,1) as

close to 3 dB as possible at 5.8 GHz and

matched to 50Ω. An equal power split

was used for ease of design, and because

we could determine no particular reason

to use an uneven split. Figure 6 shows the

final layout of the divider, and Table 2

gives the dimensions of the transmission

lines involved.

FIGURE 6. Wilkinson divider layout.

Table 2. Wilkinson Divider Dimensions

Parameter Value

Input/Output line

widths

59 mils

Leg widths 31 mils

Leg lengths 241 mils

Figure 7 shows the S(2,1) and S(3,1)

response of this circuit as simulated in

Momentum. The divider provides about

-3.4 dB at both output ports over the

entire 5.725-5.850 GHz frequency range.

FIGURE 7. Wilkinson divider S(2,1) and

S(3,1).

One output leg of the divider feeds the

BPF and RF amplifier leading to the

circuit output, while the other leg feeds

back to the PLL reference input.

BAND-PASS FILTER DESIGN

The desired filter specifications are

defined as follows:

• Center frequency (fc) = 5.7875

GHz;

• Bandwidth = 125 MHz;

• Maximally flat pass-band.

A coupled line design with a maximally-

flat response is implemented so as to

ensure ease of fabrication and a flat

response over the desired frequency

range. A low order (N=2) filter is used as

higher order designs proved to be very

lossy. The parameters for the design are

listed in Table 3.

Table 3. Band-Pass Filter Parameters

n gn Zeven Zodd

1 1.4142 53.51 46.49

2 1.4142 50.29 49.71

3 1 54.11 45.89

The circuit schematic and layout are

shown in Figures 8 and 9 as designed and

optimized in Agilent ADS.

FIGURE 8. Band-pass filter schematic.

FIGURE 9. Band-pass filter layout.

The S-parameter results of the

Momentum simulation of the filter are

shown in Figure 10. The response shows

a flat passband in the frequency range of

interest, with an attenuation of about -4

dB. This loss will be offset by the

following amplifier.

FIGURE 10. Band-pass filter

performance in Momentum.

LINK BUDGET AND AMPLIFIER DESIGN

With the BPF designed, the Wilkinson

divider and BPF were cascaded in ADS to

simulate the total insertion loss from the

divider input to the BPF output, in order

to determine whether one amplifier

would be sufficient to achieve the

specified output power, or whether two

would be necessary. Figure 11 shows the

cascaded circuit layout, and Figure 12

shows the insertion loss through the

circuit.

FIGURE 11. Divider + BPF layout.

FIGURE 12. Divider + BPF simulated

insertion loss.

Figure 12 shows approximately 8 dB of

loss through the entire circuit. The VCO

has a specified typical power output of 1.5

dBm, and the RF amplifier has a specified

gain of about 17 dB. Table 4 details the

link budget for this circuit, assuming a

conservative 2 dB of extra loss from the

VCO to the output to account for slight

mismatches, dielectric loss due to FR-4’s

poor loss tangent, and conductor loss.

Table 4. Link Budget

Component Gain

VCO output +1.5 dBm

Divider+BPF -8 dB

Extra losses -2 dB

Amplifier +17 dB

Output power +8.5 dBm

Based on this calculation, one amplifier

should be sufficient to provide the 7 dBm

output power specified.

The amplifier was laid out and biased

following the reference circuit provided

in the amplifier datasheet [2] and shown

in Figure 13.

FIGURE 13. RF amplifier biasing circuit

[2].

The bias resistor was chosen to be 162Ω

based on the amplifier datasheet and our

9V supply voltage, and the blocking

capacitors were chosen to be 10 nF to

provide a low impedance (< 2Ω) at 5.8

GHz.

MICROCONTROLLER PROGRAMMING

A Microchip PIC184F2321 28-pin

microcontroller was selected for the

design to control the PLL and implement

frequency hopping. This device was

selected due to its available and ease of

programming. The PIC was out on the

same board and communicates with the

PLL via an SPI interface and configures

the frequency of operation by loading a

series of 24 bit latches. With the correct

latch configuration, the PLL will select the

voltage for the VCO and lock to the chosen

frequency.

The PIC was programmed with a list of 75

different frequencies in a random order.

Every 0.25 seconds, the PIC would

configure the PLL to hop to the next

frequency in the list. After reaching the

end of the list, it begins again at the start.

This fulfills the frequency hopping

requirement of the project.

PCB LAYOUT

The PCB layout for the signal generator

was designed to be as simple as possible.

The only required connectors are a 9V

power connector and an SMA output for

the signal. Optional programming and SPI

headers are also available.

The layout was designed for a two layer

board with minimal via holes. Most

routing was done on the top layer with

surface mount components, except for a

few power traces on the bottom layer.

The rest of the bottom layer was a single

ground plane for both digital and RF.

The board was fabricated on 31 mil FR4

with 0.5 oz copper on each side. A milling

machine etched out the circuitry and

drilled holes, and a chemical process was

used to plate via holes for improved

grounding. The schematic and layout are

both included in Appendix 1 and 2.

IMPLEMENTATION AND PERFORMANCE

The final signal generator was a complete

success and fully compliant. It hops to all

75 channels randomly and outputs about

8.6 dBm, though the output power does

vary depending on frequency.

Figure 14 shows an image from a

spectrum analyzer connected to the

output of the signal generator when the

generator was locked to a single

frequency. There is only a single

continuous wave signal with no spurious

emissions.

FIGURE 14. Signal generator output on

spectrum analyzer.

Figure 15 shows the same signal on the

spectrum analyzer with a 5 MHz span and

10 kHz resolution bandwidth. It can be

seen that the first harmonic is 1 MHz from

the center carrier and is 40 dB below the

carrier in power, which is more than

acceptable for a communication system.

Figure 16 shows a picture of the final

system connected to a spectrum analyzer.

FIGURE 15. Signal generator output on

spectrum analyzer with 5 MHz span.

FIGURE 16. Final signal generator design connect to spectrum analyzer.

References

1. Analog Devices, ADF4107 PLL Frequency Synthesizer Datasheet,

http://www.analog.com/static/imported-files/data_sheets/ADF4107.pdf.

2. Mini-Circuits, Gali-39+ Surface Mount Monolithic Amplifier Datasheet,

http://www.minicircuits.com/pdfs/GALI-39+.pdf.

Appendix 1: Signal Generator Schematic

Appendix 2: Signal Generator Layout

Appendix 3: PIC Source Code

#include <p18f2321.h>
#include <timers.h>
#include "config_bits.h"
#include "init.h"

#define STATUS_LED PORTCbits.RC2
#define CS PORTCbits.RC6

#define PIN PORTAbits.RA0
#define PIN_PULSE PIN = 1; PIN = 0;

#pragma code high_vector=0x08
void interrupt_at_high_vector(void)
{
 _asm GOTO HiPriISR _endasm
}
#pragma code
#pragma interrupt HiPriISR

unsigned long buffer; // buffer for sending data over SPI
unsigned int timer_count; // used for measuring time

#define NUM_CHANNELS 75
unsigned char channel_sequence[] = {47, 103, 118, 86, 62, 43, 28, 136, 68, 56, 131, 149, 139, 20,
142, 107, 51, 93, 130, 7, 116, 58, 133, 48, 121, 21, 141, 63, 82, 64, 5, 140, 65, 33, 24, 78,
106, 135, 98, 52, 71, 125, 15, 73, 69, 99, 13, 44, 22, 35, 87, 143, 128, 122, 66, 1, 41, 61, 31,
10, 120, 102, 59, 119, 137, 76, 67, 127, 38, 34, 147, 70, 91, 81, 11};
int current_channel=0;
int cFreq=5725;

void main() {

 Initial();

 STATUS_LED = 1;

 // Timer 1: trigger every 0.4 ms
 // Register R/W in one 16-bit operation, 1:8 Prescale
 T1CON = 0b10110000;

 PIE1bits.TMR1IE = 1; // Timer1 overflow interrupt enabled
 IPR1bits.TMR1IP = 1; // Timer1 gets high priority interrupts
 RCONbits.IPEN = 1; // Enable high/low priority interrupt feature
 INTCONbits.GIEH = 1; // Enable both high priority interrupts
 PIR1bits.TMR1IF = 0; // Clear interrupt flag

 T1CONbits.TMR1ON = 1; // enable Timer 1;
 timer_count=0;

 CS = 1; // set chip select high to start

 // INITIALIZE SPI as MASTER
 SSPBUF = 0;
 SSPSTAT = 0b01000000;
 SSPCON1 = 0b00100000;

 while (1)
 {
 while (timer_count <1) { } // wait for timer (every .5 seconds)
 timer_count = 0;

 PIN_PULSE;

 // send the next frequency in the sequence to the PLL

 sendPLL(channel_sequence[current_channel]+5725);
 STATUS_LED = !STATUS_LED;
 current_channel++;
 if (current_channel >= NUM_CHANNELS)
 current_channel = 0;

 }
}

void SPI_send()
{
 // send 24 bits (3 bytes) to PLL

 unsigned char toSend;

 CS = 0; // Chip select low to start SPI (LE on PLL)

 toSend = (buffer >> 16) & 0xFF;
 PIR1bits.SSPIF = 0; // Clear SPI flag
 SSPBUF = toSend; // Send byte
 while (!PIR1bits.SSPIF); // Wait for transmission to complete

 toSend = (buffer >> 8) & 0xFF;
 PIR1bits.SSPIF = 0; // Clear SPI flag
 SSPBUF = toSend; // Send byte
 while (!PIR1bits.SSPIF); // Wait for transmission to complete

 toSend = buffer & 0xFF;
 PIR1bits.SSPIF = 0; // Clear SPI flag
 SSPBUF = toSend; // Send byte
 while (!PIR1bits.SSPIF); // Wait for transmission to complete

 CS = 1; // Chip select goes high (LE on PLL)
}

void sendPLL(int freq)
{
 // change the PLL frequency
 // range is 5725 to 5875 (in MHz)

 unsigned int B=89; // A counter value for 5725 MHz
 unsigned char A=29; // B counter value for 5725 MHz (6 bits)
 int k; // used for calculations

 if (freq < 5725) freq = 5725;
 if (freq > 5875) freq = 5875;

 // maths to calculate A and B values
 // R is 20. using a base frequency of 5725 MHz
 k = freq - 5725 + A; // number of "B counts" we need. 64 "B counts" = 1 "A count"
 B += k >> 6; // divide by 64 to get number of "B counts"
 A = k & 0x3F; // the remainder (lower 6 bits) is the number of "A Counts"

 buffer = (unsigned long)0xDF8096; // function latch
 SPI_send();

 buffer = (unsigned long)0x000050; // R counter
 SPI_send();

 buffer = (unsigned long)((B << 8) + (A << 2) + 1); // N counter latch
 SPI_send();

 buffer = (unsigned long)0xDF8092; // function latch
 SPI_send();
}

 void HiPriISR()
{
 // triggers on timer overflow (should be every .25 seconds)

 //WriteTimer1(65055); // Preload timer value to shorten period
 PIR1bits.TMR1IF = 0; // Clear interrupt flag
 timer_count++;
}

